Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; : 101559, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744275

RESUMEN

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.

2.
J Mol Neurosci ; 74(1): 19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358571

RESUMEN

The sympathetic nervous system (SNS) is a crucial branch of the autonomic nervous system (ANS) that is responsible for regulating visceral function and various physiological processes. Dysfunction of the SNS can lead to various diseases, such as hypertension and metabolic disorders. However, obtaining sympathetic neurons from human tissues for research is challenging. The current research aimed at recapitulating the process of human sympathetic neuron development and achieved the successful establishment of a stepwise, highly efficient in vitro differentiation protocol. This protocol facilitated the generation of functional and mature sympathetic neurons from human pluripotent stem cells (hPSCs) using a chemical-defined induction medium. Initially, each differentiation stage was refined to derive sympathoadrenal progenitors (SAPs) from hPSCs through neural epithelial cells (NECs) and trunk neural crest stem cells (NCSCs). hPSC-derived SAPs could be expanded in vitro for at least 12 passages while maintaining the expression of SAP-specific transcription factors and neuronal differentiation potency. SAPs readily generated functional sympathetic neurons (SymNs) when cultured in the neuronal maturation medium for 3-4 weeks. These SymNs expressed sympathetic markers, exhibited electrophysiological properties, and secreted sympathetic neurotransmitters. More importantly, we further demonstrated that hPSC-derived SymNs can efficiently regulate the adipogenesis of human adipose-derived stem cells (ADSCs) and lipid metabolism in vitro. In conclusion, our study provided a simple and robust protocol for generating functional sympathetic neurons from hPSCs, which may be an invaluable tool in unraveling the mechanisms of SNS-related diseases.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Humanos , Adipocitos , Diferenciación Celular , Células Epiteliales
3.
Cell Death Dis ; 13(12): 1018, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470861

RESUMEN

Down syndrome (DS) is the most common chromosomal abnormality in live-born infants and is caused by trisomy of chromosome 21. Most individuals with DS display craniofacial dysmorphology, including reduced sizes of the skull, maxilla, and mandible. However, the underlying pathogenesis remains largely unknown. Since the craniofacial skeleton is mainly formed by the neural crest, whether neural crest developmental defects are involved in the craniofacial anomalies of individuals with DS needs to be investigated. Here, we successfully derived DS-specific human induced pluripotent stem cells (hiPSCs) using a Sendai virus vector. When DS-hiPSCs were induced to differentiate into the neural crest, we found that trisomy 21 (T21) did not influence cell proliferation or apoptosis. However, the migratory ability of differentiated cells was significantly compromised, thus resulting in a substantially lower number of postmigratory cranial neural crest stem cells (NCSCs) in the DS group than in the control group. We further discovered that the migration defects could be partially attributed to the triplication of the coxsackievirus and adenovirus receptor gene (CXADR; an adhesion protein) in the DS group cells, since knockdown of CXADR substantially recovered the cell migratory ability and generation of postmigratory NCSCs in the DS group. Thus, the migratory deficits of neural crest cells may be an underlying cause of craniofacial dysmorphology in individuals with DS, which may suggest potential targets for therapeutic intervention to ameliorate craniofacial or other neural crest-related anomalies in DS.


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Humanos , Cresta Neural/metabolismo , Síndrome de Down/metabolismo , Células Madre Pluripotentes Inducidas/patología , Movimiento Celular/genética , Cráneo/patología
4.
Nat Commun ; 11(1): 5196, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060592

RESUMEN

Pericytes play essential roles in blood-brain barrier (BBB) integrity and dysfunction or degeneration of pericytes is implicated in a set of neurological disorders although the underlying mechanism remains largely unknown. However, the scarcity of material sources hinders the application of BBB models in vitro for pathophysiological studies. Additionally, whether pericytes can be used to treat neurological disorders remains to be elucidated. Here, we generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) through the intermediate stage of the cranial neural crest (CNC) and reveal that the cranial neural crest-derived pericyte-like cells (hPSC-CNC PCs) express typical pericyte markers including PDGFRß, CD146, NG2, CD13, Caldesmon, and Vimentin, and display distinct contractile properties, vasculogenic potential and endothelial barrier function. More importantly, when transplanted into a murine model of transient middle cerebral artery occlusion (tMCAO) with BBB disruption, hPSC-CNC PCs efficiently promote neurological functional recovery in tMCAO mice by reconstructing the BBB integrity and preventing of neuronal apoptosis. Our results indicate that hPSC-CNC PCs may represent an ideal cell source for the treatment of BBB dysfunction-related disorders and help to model the human BBB in vitro for the study of the pathogenesis of such neurological diseases.


Asunto(s)
Isquemia Encefálica/metabolismo , Pericitos/metabolismo , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/patología , Diferenciación Celular/genética , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Células Madre Pluripotentes/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Recuperación de la Función/genética , Accidente Cerebrovascular/patología , Transcriptoma
5.
Theranostics ; 9(6): 1683-1697, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31037131

RESUMEN

Rationale: Mesenchymal stem cells (MSC) hold great promise in the treatment of various diseases including autoimmune diseases, inflammatory diseases, etc., due to their pleiotropic properties. However, largely incongruent data were obtained from different MSC-based clinical trials, which may be partially due to functional heterogeneity among MSC. Here, we attempt to derive homogeneous mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells (hPSC) and evaluate their functional properties. Methods: Growth factors and/or small molecules were used for the differentiation of human pluripotent stem cells (hPSC) into neuromesodermal progenitors (NMP), which were then cultured in animal component-free and serum-free induction medium for the derivation and long-term expansion of MSC. The resulted NMP-MSC were detailed characterized by analyzing their surface marker expression, proliferation, migration, multipotency, immunomodulatory activity and global gene expression profile. Moreover, the in vivo therapeutic potential of NMP-MSC was detected in a mouse model of contact hypersensitivity (CHS). Results: We demonstrate that NMP-MSC express posterior HOX genes and exhibit characteristics similar to those of bone marrow MSC (BMSC), and NMP-MSC derived from different hPSC lines show high level of similarity in global gene expression profiles. More importantly, NMP-MSC display much stronger immunomodulatory activity than BMSC in vitro and in vivo, as revealed by decreased inflammatory cell infiltration and diminished production of pro-inflammatory cytokines in inflamed tissue of CHS models. Conclusion: Our results identify NMP as a new source of MSC and suggest that functional and homogeneous NMP-MSC could serve as a candidate for MSC-based therapies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Mesenquimatosas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Terapia Biológica/métodos , Biomarcadores/análisis , Movimiento Celular , Proliferación Celular , Medio de Cultivo Libre de Suero/química , Dermatitis por Contacto/terapia , Modelos Animales de Enfermedad , Humanos , Ratones , Propiedades de Superficie , Resultado del Tratamiento
6.
J Chem Neuroanat ; 97: 71-79, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30790627

RESUMEN

Alzheimer's disease (AD) is characterized by a robust inflammatory response elicited by the accumulation and subsequently deposition of amyloid beta (Aß) within the brain. The immune cells of brain migrate to and invest their processes within Aß plaques and clear plaques from the brain. Previous studies have shown that treatment of myeloid cell with nuclear factor inhibitor increases expression of phagocytesis-related genes, such as triggering receptor expressed on myeloid cells 2 (TREM2). In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation as well as inflammatory response in vitro. The purpose of this study was to further investigate microglial proliferation, phagocytosis and the expression of brain derived neurotrophic factor (BDNF) induced by up-regulation of TREM2 in Aß1-42 injected mice. We first singly injected Aß1-42 into the hippocampus of mice to build the model of AD-like symptoms. Subsequently, ammonium pyrrolidinedithiocarbamate (PDTC) was injected into the lateral ventricle of mice. Various immunohistochemical techniques and Western blot analyses were applied to examine expressions of TREM2, microglia, Aß, Neuronal migration protein doublecortin (DCX) and BDNF in the hippocampus of mice. In the present study, we found the plaques-associated microglia lowly expressed TREM2 and BDNF in Aß1-42 intra-hippocampal injected mice. Treatment of the models with a nuclear factor inhibitor, PDTC, further induced the expression of TREM2 and enhanced microglial phagocytosis, coincident with the rapid reduction in plaque burden. The expression of BDNF was up-regulated and the expression of DCX was partly restored. This means that up-regulation of TREM2 might induce the microglia to express the BDNF. These findings further indicate that the level of TREM2 may affect the microglia response to pathological process induced by Aß.


Asunto(s)
Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Regeneración Nerviosa/fisiología , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Animales , Proteína Doblecortina , Hipocampo/patología , Ratones , Fagocitosis/fisiología , Regulación hacia Arriba
7.
Neural Regen Res ; 12(8): 1287-1293, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28966643

RESUMEN

Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba. To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...